Number and data representation

Binary, hexadecimal, and more

Numbers and counting

• Why do we count in base 10?

Big idea: Positional encoding

Base 10:

Base 8:
$$0 < 7 < 4 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 6$$

$$0 < 7 < 7 < 6$$

$$0 < 7 < 7 < 7 < 7$$

$$0 < 7 < 7 < 7 < 7$$

$$0 < 7 < 7 < 7$$

$$0 < 7 < 7 < 7$$

$$0 < 7 < 7 < 7$$

$$0 < 7 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

$$0 < 7$$

Yoda says: "Positional encoding is great for doing computation, the base is not that big of a deal ... unless you are working on a computer"

Binary representation (base 2)

- Only two symbols: 0 and 1
- Internally represented as voltages: LOW and HIGH
- Why only 2?

Binary representation (base 2)

- Only two symbols: 0 and 1
- Internally represented as voltages: LOW and HIGH
- Why only 2?

Binary representation (base 2)

- Only two symbols: 0 and 1
- Each position is called a bit
- What is the decimal equivalent of the binary number:

Decimal to binary

$$45_{10} = ?$$

Represented as an 8 bit binary number, has how many bits that are 1?

- A. 2
- B. 3
- C. 4
- **D.** 5
- E. 6

Hexadecimal (base 16)

• 16 possible symbols:

Binary?

0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal (base 16)

```
NEC HEX
```

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

Hexadecimal (base 16)

DEC	HEX	BIN	DEC	HEX	BIN
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	Α	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	Ε	1110
7	7	0111	15	F	1111
			16	10	10006

Conversions

Binary, hexadecimal, decimal, octal, ...

Representing other data

- All the information in your computer is in binary –how?
- Big idea: N bits can be used to represent 2^N things!

Binary patterns

Numbers

Colors

000

0110

GREEN

REN

Bits take up space

 How many bits would you need (at the minimum) to represent 10 different colors?

```
A. 2
B. 3
C. 4
D. 5
E. 10
```

Binary operations

Addition

Shift

Maya Numbering System

Maya Numbering System

